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1. Motivation and Objectives

Transition to turbulence in aerospace applications usually occurs in a strongly dis-

turbed environment. For instance, the effects of free-stream turbulence, roughness

and obstacles in the boundary layer strongly influence transition. Proper under-

standing of the mechanisms leading to transition is crucial in the design of aircraft

wings and gas turbine blades, because lift, drag and heat transfer strongly depend

on the state of the boundary layer, laminar or turbulent. Unfortunately, most of

the transition research, both theoretical and experimental, has focused on natural

transition. Many practical flows, however, defy any theoretical analysis and are ex-

tremely difficult to measure. Morkovin 5 introduced in his review paper the concept

of bypass transition as those forms of transition which bypass the known mecha-

nisms of linear and non-linear transition theories and are currently not understood

by experiments.

In an effort to better understand the mechanisms leading to transition in an

disturbed environment, experiments are conducted studying simpler cases, viz. the

effects of free-stream turbulence on transition on a fiat plate, Sohn and Reshotko 14

and Wang et al. 19. It turns out that these experiments are very difficult to conduct,

because the generation of free-stream turbulence with sufficiently high fluctuation

levels and reasonable homogeneity is non trivial. For a discussion see Morkovin 5.

Serious problems also appear due to the fact that at high Reynolds numbers the

boundary layers are very thin, especially in the nose region of the plate where the

transition occurs, which makes the use of very small probes necessary.

The effects of free-stream turbulence on transition are the subject of this re-

search and are especially important in a gas turbine environment, where turbu-

lence intensities are measured between 5 and 20%, Wang et al.19. Due to the fact

that the Reynolds number for turbine blades is considerably lower than for aircraft

wings, generally a larger portion of the blade will be in a laminar-transitional state.

Turner 15 shows that the effect of free-stream turbulence on transition significantly

increases when the free-streaxn turbulence levels become larger than 5% and is ac-

companied with a significant increase in heat transfer. Recently Rai and Moin 11

presented a direct numerical simulation of transition to turbulence on a flat plate

in a free-stream with Math number .1 and turbulence levels at the leading edge

of about 2.75%. Direct numerical simulations offer a unique opportunity to study

specific phenomena, while excluding disturbances from other sources. The com-

putations from Rai and Moin show some impressive results, especially regarding

intermittency and turbulent spots. Their numerical simulation, however, has the

same problem as with most of the experiments, namely a very low Much number,
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while many applications operate in the transonic regime. Due the" nature of their

numerical scheme, a non-conservation formulation of the Navier-Stokes equations,

it is a non-trivial extension to compute flow fields in the transonic regime.

This project aims at better understanding the effects of large free-stream tur-

bulence in compressible boundary layers at Much numbers both in the subsonic

and transonic regime using direct numerical simulations. The present project aims

at computing the flow over a flat plate and curved surface. This research will

provide data which can be used to clarify mechanisms leading to transition in an

environment with high free stream turbulence. This information is useful for the

development of turbulence models, which are of great importance for CFD appli-

cations, and are currently unreliable for more complex flows, such as transitional

flows.

2. Accomplishments

Direct simulations of transition in compressible flows with both shocks and bound-

ary layers requires an extremely accurate and efficient scheme. Several conflicting

requirements present a serious challenge which cannot be met by existing numerical

schemes:

• The small grid spacing in the boundary layer makes an implicit scheme necessary,

because an explicit scheme would have a severe time step limitation. Implicit

schemes usually are not time accurate and rather dissipative..

• Higher order accurate schemes are necessary but higher order accurate schemes

generally do not give non-oscillatory solutions around discontinuities, such as

shocks. Many of the popular non-oscillatory shock capturing schemes, such as

TVD (Total Variation Diminishing) methods, are only first order accurate in

multi-dimensional flows and even in one-dimension they reduce to first order at

non-sonic local extrema.

In order to satisfy these conflicting requirements a significant effort has been made

to improve and combine several successful numerical schemes. A fully implicit and

time accurate code for the solution of the three-dimensional compressible Navier-

Stokes equations in general geometries has been written and tested. Higher order

accuracy and shock capturing are implemented using an Essentially Non-Oscillatory

(ENO) scheme. Time accuracy is obtained using a Newton method.

In the next section a brief description of the numerical scheme will be given

followed by the discussion of a series of tests aimed at validating the code.

2.1 Numerical Scheme

The compressible Navier-Stokes equations are solved using a finite volume method.|

A detailed discussion of finite volume and difference methods can be found in

Vinokur Is. The integral formulation of the Navier-Stokes equations, assuming all

variables are continuous in time, is given by:

0 fv UdV+_ n-_'dS=0 (2.1.1)
Ot (t) (t)
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Here V(t) and surface S(t) are the volume and outer surface of the domain

and n an outward unit normal vector at S. The vector U represents the conserved

variables: (p, pu, pv, pw, e) T, with p the density, u, v and w the velocity components,

and e the total energy. The tensor Jr is defined as _" = S + 1), with C the inviscid

)
puw

; E3 = pvw (2.1.2)

| pw2 +p

\(e+p)w

contribution defined as:

pu 2 + p puv

El= | puv [; E2- pv2 + p

I puw j pvw
\ (e+ p)u/ (e + p)v

and l)the viscous contribution:

(0) (0) (0)V_ = _-_ ; V2= _'2 ; Va= _'3

u-T_ + ql . u. v2 + q2 u. Ta+qa

The shear stress tensor T, with components (TI, rZ, _a) is defined as:

z= + v. T) + a(v. u)Z)

and the heat flux q as:

(2.1.4)

_VT

q = (,_/- 1)ReM_Pr (2.1.5)

The variables p, T, #, )_ and t; represent the pressure, temperature, first and

second viscosity coefficient and thermal conductivity, respectively. The coefficients

Re, M_, and Pr are the Reynolds, Mach, and Prandtl numbers. All variables are

non-dimensionalized using free-stream variables and a characteristic length L.

The Navier-Stokes equations are solved using a finite volume method because we

seek a weak solution in order to capture shocks in high Reynolds number flows.

The finite volume method is also the most natural way to satisfy the conservation

properties of the differential equations. After subdividing the volume V into a set of

disjunct cells we obtain the finite volume discretization for a cell with index i, j, k:

^1 ^2 _2 _3 _3
O'-tO(VU,,¢,k) + _'_+½ j,_ - F,_½j,_, + F,d+],_ - F,,j_],_ + F,d,_+½ - F,j,k_ ½ -- 0

where a barred quantity with index i, j, k is an average of the unbarred quantity

over the cell with index i, j, k and indices i + ½, j + ½ and k 4- ½ refer to values at
the cell faces. The fluxes _-i at the cell faces are defined as:

_'_ -= S t. _" (2.1.7)

with S t the cell face in the direction i. The computation of the cell face S t and

volume V has to be done with great care in order satisfy the geometric conservation

law, for details see Vinokurl9:
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Flux Approximation

The crucial part in the development of a finite volume method is the approxi-

mation of the fluxes at the cell faces. The flux Fi+½_ 1 is computed using the Osher

approximate Riemann solver. The first order accurate conservative flux is given by:

I -x - fr la ' ldu)F_+½,j,_ = _(Fi,j,_ + Fi+l,j,k , (2.1.8)

with equivalent expressions for the other two directions. The integral is computed

along a path in phase space, connecting the points with index (i, j, k) and (i+ 1, j, k).

Along each subpath a Riemann problem is solved, which is used to determine the

intermediate states. In this way exact expressions can be derived for the path inte-

grals. More details about the implementation of the Osher scheme can be found in

Osher and Solomon s, Osher and Chakravarthy 7, Chakravarthy and Osher 1 and Rai

and Chakravarthy l°. The Osher approximate Riemann solver is the most accurate

approximate Riemann solver and satisfies the entropy condition, contrary to the

Roe approximate Riemann solver which needs an entropy fix to eliminate steady

expansion shocks. The Osher scheme captures steady shocks in at most two points.

The most important reason for the choice of the Osher scheme, however, has

been its low numerical dissipation in boundary layers, Koren 4. Most schemes for

the Euler equations are very dissipative in the boundary layer and not well suited

for direct numerical simulations. In earlier work, Van der Vegt lr, modifications to

flux vector splitting schemes were discussed to alleviate this problem, but although

significant improvement was achieved on steady laminar boundary layers, it was

not possible to reach accuracy levels necessary for direct simulations.

Higher order spatial accuracy

Direct simulations require a high accuracy which cannot be achieved with stan-

dard second order schemes. It is fairly straightforward to derive higher order accu-

rate finite difference schemes, but shock capturing then will not be possible. The

development of higher order accurate, multi-dimensional finite volume schemes,

capable of shock capturing still is an area of active research, and has been an im-

portant subject in this project. A significant effort has been made to combine the

Osher approximate Riemann solver, discussed in the previous section, with an ENO

scheme. Results of this work are described in Van der Vegt 17, where the different

ENO methods are discussed and results of various tests are discussed.

Higher order accuracy of a finite volume method can be defined is various ways.

One approach is to define higher order accuracy with respect to the cell averaged

values. This resembles most closely the finite volume description, which gives equa-

tions for the cell averaged values. Another definition of higher order accuracy uses

the point values at the cell center, which is used in conservative higher order finite

difference methods. Both approaches are being used. For subsonic flows currently

the fifth order scheme, developed by Rai 9, is used, which is based on a Taylor series

expansion of the flux vector along the lines presented by Osher and Chakravarthy s.

This method is a conservative finite difference scheme. It has the benefit that it is
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simple to implement in more dimensions, but does not allow shock capturing. Os-

her and Chakravarthy s demonstrated how to make these schemes TVD and allow

shock capturing, but they are not very useful and only first order accurate globally.

The scheme therefore is used in its unlimited form, limiting its application to flows

without discontinuities such as shocks. The scheme also is rather expensive and

work is in progress to improve its efficiency.

For flows with shocks research has been carried out to develop higher order ac-

curate ENO schemes. ENO schem_ use an adaptive stencil where a searching

algorithm tries to find that part of the flow field surrounding a cell which is the

smoothest. Then a conservative, higher order accurate interpolation method is used

to "reconstruct" the point values from the cell averaged values. Due to the fact that

the interpolation process only uses data from the smooth part of the flow field nu-

merical oscillations will be minimized. In this way uniform higher order accuracy

can be obtained. The first ENO methods were developed by Harten et al. 3, and

later modifications were proposed by Shu and Osher 12,13. In Van der Vegt 17 the

different methods were compared and it was found that the ENO scheme, using

primitive function reconstruction from cell averaged variables with the Cauchy-

Kowalewski procedure for time integration combined with the Osher approximate

Riemann solver, was the most accurate and robust. In one dimension it has been

successfully used up to fifth order accuracy, but due to the fact that in multi-

dimensional flows currently dimension splitting is used, its accuracy is limited to

second order in more than one dimension. Work to extend this scheme to higher

order accuracy in multi-dimensional flows is in progress.

Time integration

Due to the very small gridspacing necessary at the wall and in critical layers

explicit time integration would result in a serious time step limitation. To alleviate

this problem implicit time integration has to be used, but most implicit time inte-

gration schemes make assumptions in the implicit part which reduce or eliminate

time accuracy. The development of implicit and time accurate numerical schemes

therefore has been a significant part of this research. Time accuracy is obtained

using the Newton method discussed in Rai 9, which solves the non-linear system of

equations in the implicit time integration scheme using a Newton method. Rai uses

this method also to reduce the error caused by approximate factorization. We do

not use approximate factorization but solve the whole matrix system iteratively, see

Van der Vegt 16, and need the Newton scheme only to reduce the error due to the

time linearization. This iterative scheme also has the benefit that it is not neces-

sary to use an exact linearization of the flux vectors, which can be very difficult

and time consuming to obtain. First order Steger-Warming flux vector splitting is

used in the implicit scheme, while a higher order accurate spatial discretization is

used for the explicit part. At each time step the Newton iteration is performed

such that the accuracy of the higher order explicit part is maintained. The use of

an approximate linearization, however, limits the maximum time step and work is

in progress to evaluate if a more accurate linearization would improve the perfor-

mance and robustness of the scheme. Especially at high Much numbers there still
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are convergence problems for large Courant numbers when the scheme is used to

obtain steady state solutions.

2.2 Results and Discussion

Several computations have been carried out to test the code and the various

numerical schemes. In order to test the Osher approximate Riemann solver and

the ENO schemes a large number of shock tube calculations have been carried out,

a detailed description of this work can be found in Van der Vegt 17. The different

ENO schemes tested were the ENO method from Harten et al. a, using primitive

function reconstruction and either Runge-Kutta time integration or the Cauchy-

Kowalewski procedure, and the Shu and Osher flux-ENO scheme. In all cases the

Osher approximate Riemann solver was used and the effect of the ordering of the

eigenvalues, viz. natural and reversed ordering, has been investigated. Four cases

with different difficulties were tested, see Table 1. The performance of the different

schemes was reasonable in most cases, but it turned out that the ENO scheme

with primitive function reconstruction and the Cauchy-Kowalewski procedure for

time integration (ENO-CK) was the most accurate and robust. Some of the results

obtained with this method, are shown in Figures 1 and 2. Figure 1 shows a left

moving shock followed by a contact discontinuity and a right moving expansion

wave. A difficult problem for the ENO schemes in case A is the fact that in the

initial stages there are not enough grid points available in the region between the

shock and contact or shock-shock. The ENO scheme searches for the stencil which

gives the smoothest part of the flow field around a grid point or cell. In these

cases there exist in both directions a discontinuity and there are not enough points

available to build a non-oscillatory higher order reconstruction. This problem exist

for all ENO schemes but the ENO Cauchy Kowalewski scheme is the least sensitive

for it. The other methods have mild to strong oscillations in these areas. One way

to solve this problem is to reduce the accuracy locally till enough grid points are

available to create a higher order reconstruction, but this is a problem which still

needs further attention. Case B, Figure 3, shows a left moving expansion wave and

a right moving contact discontinuity and shock. One of the problems in this case is

the appearance of a sonic point, which gives a small jump of O(Ax) at first order.

The shock tube tests showed that it is possible to use a higher order scheme for

flows with discontinuities, but the convergence of these higher order schemes can

Case PL PR Ub

A

B

C

E

15000

988000

10000

573

9840O

9930

100OOO

22300
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0 0

0 0

0 0

2200 0

Table I. InitialConditions Shock Tube Tests.
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2438 2452
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199 546
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Fig. 1. Case A, density at t = .2, 2nd and 5th order ENO-CK.
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Fig. 2. Case B, density at t = .2, 2nd and 5th order ENO-CK.

be at most first order around these discontinuities. Tests of all the ENO schemes

on smooth solutions showed that they all reached the proper level of accuracy. Test

are currently underway to check if the ENO schemes give higher order accuracy in

regions outside discontinuities as they are supposed to. This is an important test

to see if these methods are capable of shock-turbulence interaction simulations.

In order to test the shock capturing properties of the code the flow field around

a circular cylinder at Much 8 has been computed. Although the flow field was two-

dimensional the three-dimensional code was used to check if the flow field remained

exactly two-dimensional and the geometric conservation law was satisfied. Figure

3. presents contours of the pressure at a spanwise station along the cylinder. The

solution is the same at all stations. The flow field consists of a strong bow shock

where the Mach number changes from 8 to about 2.8 behind the shock at the

symmetry line. Apart from the strong shock another aspect of this case is the

121



Jacobus J. Van der Vegt

Figure 3. Pressure field of flow around a cylinder at Mach 8

fact that the flow field in the stagnation region ahead of the cylinder is subsonic.

The sonic line is at about 45 degrees with the flow angle and a smooth transition

is observed from the subsonic to the supersonic region. This case has also been

computed by Osher and Chakravarthy T and the results compare well. To test the

ability of the code to simulate transitional flows which is a crucial test before bypass

transition can be simulated currently computations are done on natural transition

in a fiat plate boundary layer. A comparion is made with the results of Fasel et
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Figure 4. Vertical velocity field in a flat plate boundary layer at Mach 0.08 with

periodic suction and blowing (vertical direction enlarged 20 times).

al. 2, which computed transition in an incompressible boundary layer. In order to

make the comparison as accurate as possible a very low Mach number, Moo = .08

was chosen. This Mach number is approximately the lower limit for the numerical

scheme and despite the fact that the computations are fully implicit a severe time

step limitation is imposed by the sound waves. To start the simulation first a steady

laminar boundary layer is computed, which is a non-trivial task because a very high

accuracy is needed in this computation. The disturbances at the beginning of the

plate have an amplitude of 10 -4 and transition simulations require a very low nu-

merical dissipation. The disturbances are generated by periodic suction and blowing

in a strip somewhat downstream of the inflow boundary. This is done because there
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are always numerical disturbances due to the fact that the inflow boundary condi-

tions are not perfect. The disturbances are generated in a region of the boundary

layer which is linearly stable. When they move downstream first the transients are

damped and after they move in the unstable region the Tolmien Schlichting waves,

which are the most unstable two-dimensional waves, are amplified. In order to ac-

commodate for the fact that the subsonic outflow boundary conditions, which are

essentially inviscid, are not perfect in a boundary layer a buffer layer is added to the

plate to damp as much as possible the reflections coming from this boundary layer.

This is the same procedure as used by Rai and Moin n. The number of grid points

in this computation is 340 x 82. It turned out that the most efficient way to obtain

the steady boundary layer was to first start with the second order scheme running

at a Courant number of 120 using the implicit Euler time integration and to switch

to the fifth order scheme after most of the transients are damped out. The fifth

order scheme has a very low dissipation and would otherwise take a long time to

converge. The maximum CFL number for which the fifth order scheme is stable is

approximately 160. Ater the steady state was obtained periodic suction and blowing

were added and the fifth order scheme was used with the Newton time integration

scheme at a CFL of 60. Figure 4. shows a preliminary result of this computation

and it clearly shows the gradual build up of the boundary layer instability. The

results are currently analysed to make a comparison with the incompressible results

of Fasel et al.2.

3. Future Plans

Further testing of the code will have to be done for more complicated cases.

Currently a comparison with the results of stability of a flat plate boundary layer
at low Mach number with the results from Fasel et al. 2 is being completed. If

this comparison and equivalent tests for high Mach number boundary layers are

satisfactory a simulation of bypass transition on a subsonic flat plate boundary

layer will be made, followed by simulations of a boundary layer on a curved plate.

Also work has to be continued to develop higher order accurate ENO schemes for

multi-dimensional flows. This is crucial for direct simulations of transonic flows

with both shocks and turbulence.
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